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Soybean is an important food and cash crop in Uganda. Despite the importance of soybean in Uganda’s 
economy, its performance is highly affected by genotype × environment interaction making it difficult to 
select and recommend new superior soybean genotypes for diverse growing environments. The 
objectives of this study were to examine the nature of G × E interaction for soybean grain yield, to 
identify stable and high yielding soybean genotypes with desirable percentage protein and oil content 
for production in diverse environments and to determine ideal test location for future soybean breeding 
activities in Uganda. The experiment was conducted at six locations for two consecutive seasons of 
year 2018 (2018A and 2018B). Twenty-three newly advanced generation soybean lines and two 
commercial varieties were evaluated in a randomized complete block design replicated three times. 
Combined analysis of variance over locations and seasons was carried out for grain yield, protein and 
oil (%) content. The results for grain yield showed significant (p<0.05) differences for all the sources of 
variation except genotypes × season interaction. Percentage protein and oil content showed non-
significant (p>0.05) for all the sources of variation except location. The genotype main effect plus G × E 
interaction biplot explained 65.74% of the total interaction sum of squares for grain yield and showed 
that the advanced generation soybean lines BSPS 48A-28; Mak 3N × 1N and NGDT 8.11×3N-2 were high 
yielding and stable and had other desirable agronomic traits. Nakabango was the most discriminating 
and representative test location.  
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INTRODUCTION 
 

Soybean (Glycine max L.) is an important food  and  cash crop in  Uganda  (Ibanda et al., 2018; Gebremedhn et al.,  
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2018).  Due to its nutritional superiority, soybean flour is 
often blended with cereal flours such as maize to boost 
their nutritional value. In Uganda, Makerere University 
Soybean Improvement Centre is developing soybean 
varieties ideal for food and industrial purposes 
(Tukamuhabwa et al., 2016). Generally, majority of 
farmers like high-yielding, minimal stem lodging and non-
shattering soybean varieties that are less susceptible to 
common diseases such as soybean rust and red-leaf 
blotch (Tukamuhabwa and Obua, 2015) and pests such 
as groundnut leaf miner (Ibanda et al., 2018) and 
bruchids (Msiska et al., 2018). Food processors also 
want soybean varieties with high protein and oil content. 
Farmers and food processors normally would want all 
these traits incorporated in one variety (Whaley and 
Eskandari, 2019). In most cases, the agronomic traits are 
highly heritable and can be easily selected with accuracy 
at early generation testing. However, the expression of 
quantitative traits such as seed yield, protein and oil 
content is highly influenced by genotype × environment 
interaction, hence complicates the identification and 
selection of superior genotypes (Gurmu et al., 2009; 
Hampango et al., 2017) and therefore multi-environment 
trials (MET) are recommended for evaluation of 
promising lines (Nyombayire et al., 2018). 

Uganda’s agro-ecological regions are highly diverse 
with variable climatic conditions accelerated by global 
climatic changes that influence mean annual rainfall (510-
2160 mm), temperature (23-28°C) and varied soils 
influenced by soil depth, texture, acidity and organic 
matter (Agoyi et al., 2017; Tukamuhabwa et al., 2012). 
Due to the variability of abiotic and biotic factors from 
location to location, soybean performance remains 
exposed to the influence of huge genotype × environment 
interactions,  leading to inconsistent genotypic responses 
(Bhartiya et al., 2017); therefore, the development of 
stable varieties will be the only sustainable way to cope 
with the ever-changing biotic stresses like the outbreak of 
groundnut leaf miner (Ibanda et al., 2018) and soybean 
rust (Maphosa et al., 2013; Gebremedhn et al., 2018) and 
abiotic stresses; like extreme temperature and rainfall 
changes (Tukamuhabwa et al., 2016). The presence of 
significant G × E interaction for grain yield, percentage 
protein and oil content in soybean has been reported by 
several researchers (Gurmu et al., 2009; Nascimento et 
al., 2010; Chaudhary and Wu, 2012; Atnaf et al., 2013; 
Hampango et al., 2017; Bhartiya et al., 2017) which could 
lead to the failure of genotypes to achieve the same 
relative performance in different environments (Noëlle et 
al., 2018; Thungo et al., 2019).  

The differential performance of genotypes across 
several unrelated environments reduces responses to 
selection and subsequently progress in plant breeding 
programs (Crossa et al., 2002; Yan and Kang, 2002). 
Furthermore, the presence of significant crossover G × E 
interaction   complicates   the   recommendation   of  new 
varieties from MET and the identification of ideal  
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genotypes (Bernardo, 2002; Yan and Kang, 2002) which 
should be either specific or widely adapted across 
different agro-ecological zones. Therefore, characterizing 
the interaction between genotypes and environments is 
very important for the selection of genotypes with high 
adaptability to specific environments or with high stability 
across different environments (Yan et al., 2000; Yan et 
al., 2019). In this regard, Yan and Tinker (2006) 
presented some objectives of MET analysis that included 
mega-environments delineation to minimize negative G × 
E interaction, as well as identification of the most 
discriminating and representative testing locations within 
mega-environments and identification of superior 
genotypes. This is important in cultivar development in 
order to rationalize resources and confine genotype 
evaluation to ideal locations that are informative to 
facilitate a rapid response to selection (Tukamuhabwa et 
al., 2012). 

Several statistical methods for analyzing G × E 
interaction have been reviewed (Westcott, 1986).  
However, not all ways of exploiting G × E interaction 
involve trying to reduce it (Bernardo, 2002). Some 
methods, like analysis of variance (ANOVA), are good at 
detecting G × E interaction but cannot reveal the pattern 
of the interactions (Gasura et al., 2015). Regression-
based methods (Eberhart and Russell, 1966) use 
environmental scores, which have less to do with 
genotype plus G × E interaction and explains only a small 
part of genotype main effect plus genotype × environment 
interaction (GGE) (Yan et al., 2007). In the recent past, 
statistically effective multivariate techniques, such as 
biplots based on Singular Value Decomposition (SVD) 
and Principal Component Analysis (PCA) have been 
developed for G × E interaction analysis (Gauch, 2006; 
Yan and Tinker, 2006). Approaches such as the 
genotype main effect plus G × E interaction (GGE) biplot 
(Yan, 2001;Yan and Tinker, 2006) and the Additive Main 
effect and Multiplicative Interaction biplot (AMMI) (Gauch, 
2006, 2013; Gauch  et al., 2008) have been widely used 
to exploit significant G × E interaction in soybean MET 
data as they effectively capture the additive (linear) and 
multiplicative (bilinear) components of G × E interaction 
and provide meaningful display and interpretation of 
multi-environment data set in breeding programs. 

The biplot model that is fitted to residuals after the 
exclusion of the environment-centered data is called a 
GGE biplot (Yang et al., 2009). The GGE biplot is a 
graphical display of G × E interaction data into a two-way 
table for simplicity visualization of the interrelationship 
and it can be subjected to several ways of singular value 
decomposition (SVD) (Yan and Tinker, 2006). Yan and 
Hunt (2001) suggested that, for cultivar evaluation and 
recommendation, genotype and G × E interaction are the 
only two sources of variation that are crucial and must be 
considered simultaneously for appropriate genotype and 
test  environment  evaluation. Using  a  site’s regression 
model (SREG) Yan et al. (2000) combined genotype  
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Table 1. Experimental sites used in the study during season 2018A and 2018B. 
 

Site Coordinates 
Altitude 

(m) 

Mean annual 
temperature (°C) 

Mean annual rainfall  

(mm) 
Soil type 

Nakabango 00° 31’N 33°12’E 1178 26 1400 Crysalline basic 

Iki-Iki 01° 06’N 34° 00’E 1156 28 1200 Sandy 

Kabanyolo        00° 28’N 32° 37’E 1300 22 1255 Sand-clay loam 

Bulindi 01° 28’N 31° 28’E 1230 23 1700 Sandy loam 

Ngetta 02° 17’N 32° 56’E 1085 29 1483 Sandy loam 

Abi 03° 5’N 30° 56E 1140 24 1250 Sandy-clay loam 
 

Source: NARO Ngetta-Zardi (2018). 
 
 
 

main effect and genotype × environment interaction, 
denoted as G + G × E interaction or GGE and 
repartitioned this into crossover and non-crossover G × E 
interaction. For exploiting G × E interaction in MET data, 
the strengths of the GGE and AMMI biplots have been 
debated unequivocally (Gauch, 2006; Yan et al., 2007; 
Gauch et al., 2008; Yang et al., 2009). In MET data, the 
GGE biplot is crucial in assessing the genotype main 
effects plus the G × E interaction (Yan and Tinker, 2006). 
This multivariate analysis technique has been widely 
used for delineating soybean production mega-
environments and soybean variety recommendations 
(Bhartiya et al., 2017; Hunde et al., 2019). The objectives 
of this study were to examine the nature of G × E 
interaction for soybean grain yield, to identify stable and 
high yielding soybean genotypes with desirable 
percentage protein and oil content for production in 
diverse environments and to determine ideal test location 
for future soybean breeding activities in Uganda. 
 
 

MATERIALS AND METHODS 
 

Materials and testing environments 
 

The study was carried out at six locations namely; Kabanyolo, Iki-
Iki, Nakabango, Ngetta, Abi and Bulindi that are located in different 
agro-ecological regions of Uganda (Table 1). These locations have 
different climatic conditions, and therefore may influence the 
expression of soybean grain yield, protein, oil content and 
agronomic traits differently. Furthermore, these locations represent 
major soybean growing areas of Uganda. Twenty-five soybean 
genotypes were used in this study. Among the genotypes used, 23 
were advanced generation lines and two were commercial varieties 
used as checks (Table 2).  
 
 

Experimental design  
 

A randomized complete block design (RCBD) with three replications 
was used. Each entry was represented by three rows measuring 5 
m long with an inter-row and in-row spacing of 60 cm and 5 cm 
respectively. The study was carried out for two consecutive 
seasons; first rains of 2018 (2018 A), and second rains of 2018 
(2018 B). The trials were kept weed free by constant weeding. 
 
 

Data collection 
 

Data was collected on soybean rust, a major soybean disease in  

Uganda using a scale of 1-5 (Miles et al., 2006) where 1= no visible 
lesion, 2= few scattered lesions present, 3= moderate number of 
lesions on at least part of the leaf, 4= abundant number of lesions 
on at least part of leaf, and 5= prolific lesion development on most 
of the leaf. Days to 50% flowering and plant height were recorded 
as described by Obua (2013). The groundnut leaf miner (GLM) 
severity was scored using the standard scale of 1-5 as described by 
Ibanda et al. (2018). The number of pods per plant was recorded at 
harvest. Furthermore, at harvest the genotypes were threshed, and 
100 seed weight and yield per plot were determined and later 
corrected to 12% moisture content before determining yield per 
hectare (Tukamuhabwa et al., 2012). Protein and oil content (%) 
were quantified using the data from first and second replications of 
selected four locations of Nakabango, Iki-Iki, Abi and Bulindi. The 
locations were selected based on their previous informative study of 
Tukamuhabwa et al. (2012). The analysis described by Owusu-
Apenten (2002) was used to quantify the protein content, whereas, 
the oil content was determined using Near infrared spectroscopic 
analysis as described by Sato (2010). 

 
 
Data analysis  

 
Analysis of variance (ANOVA) was performed initially for each 
environment to determine the performance of the genotypes in 
different environments. Combined analysis of variance over 
locations and seasons was conducted using mixed model as 
suggested by Moore and Dixon (2015) (where genotypes and 
locations were fixed, whereas seasons, all the interactions involving 
seasons, replications and error were considered random) in 
Genstat software version 18 (Genstat, 2016). To determine the 
performance of different genotypes across seasons and locations, 
the following model for combined analysis of variance  was used as 
described by Gasura et al. (2015); 

 
Yijkl = µ + r1(pt)jk + gi + pj + tk + (gp)ij + (gt)ik + (pt)jk +(gpt)ijk + eijkl 

 
Where, Yijkm(l) is observed value of ith genotype in the jth 

location and the kth season in the lth replication, µ is the grand 
mean, r1(pt)jk is the effect of the lth replication within locations and 
seasons, gi, pj and tk are the main effects of the genotype, locations 
and seasons, (gp)ij, (gt)ik, (pt)jk are the first order interactions and 
(gpt)ijk is the second-order interaction, and finally eijkl is the pooled 
error term.  

The proper F-test for a mixed model in which genotypes and 
locations were considered fixed effects and seasons treated as 
random effects was applied as suggested by Mclntosh (1983) and 
recently by Moore and Dixon (2015). The assumption of sum to 
zero the effects  of  random interactions across each level of a fixed 



 
 
 
 

Table 2. Names and codes of the soybean genotypes used in 
the study. 
 

Code Genotype name Status 

G1 Duiker × 3N-5 Advanced line 

G2 GC × 2N-1 Advanced line 

G3 BSPS 48A-27-1 Advanced line 

G4 BSPSS 48A-28-1 Advanced line 

G5 NGDT8.11×14.16B Advanced line 

G6 NII × GC 13.2 Advanced line 

G7 BSPS 48A-25-1 Advanced line 

G8 Nam II GC 17.3 Advanced line 

G9 NII × GC 35.3-2 Advanced line 

G10 NG 14.1 × UG5 Advanced line 

G11 Nam 4M × 2N-2 Advanced line 

G12 NII × 35.3-3 Advanced line 

G13 G8586 × UG5 Advanced line 

G14 NGDT 8.11× 3N-1 Advanced line 

G15 BSPS 48A-28 Advanced line 

G16 Bulindi 18.4B Advanced line 

G17 Maksoy 4N Standard check 

G18 BSPS 48A-24-1 Advanced line 

G19 Bulindi 24.1A Advanced line 

G20 NII × GC 35.3-1 Advanced line 

G21 NDGT 8.11×3N-2 Advanced line 

G22 2N × GC Advanced line 

G23 Mak 3N × 1N Advanced line 

G24 NG 14.1 × NII-1 Advanced line 

G25 Maksoy 3N Standard check 

 
 
 
factor for combined experiments was used as described by Moore 
and Dixon (2015). In brief, the mean squares for genotypes, 
genotypes × locations, genotypes × seasons and genotypes × 
locations × seasons were tested against the pooled error mean 
square, while locations, seasons and locations × seasons were 
tested against the mean square of replications within locations and 
seasons (Mclntosh, 1983). The variance components due to 
genotypes (δ

2
g), genotypes × location (δ

2
gl), genotypes × seasons 

(δ
2
gs), genotypes × locations × seasons (δ

2
gls) and random error 

(δ
2
error) were obtained by solving the equations formed by 

equating the mean squares to their respective expected mean 
squares (Moore and Dixon, 2015). The variance components due to 
environments (location × seasons combinations) were estimated by 
summation of δ

2
l, δ

2
s and δ

2
ls, whereas the variance component 

attributed to genotype × environment (δ
2
ge) was estimated by 

adding up δ
2
gl, δ

2
gs and δ

2
gls (Mclntosh, 1983). The broad sense 

coefficients of genetic determination (BSCGD) (broad sense 
heritability based on fixed genotypes) on a single plot basis, single 
environment basis and across environments basis were obtained 
by solving the following equations as; δ

2
g/(δ

2
g + δ

2
gl + δ

2
gs + δ

2
gls 

+ δ
2
error); δ

2
g/ (δ

2
g + δ

2
gl + δ

2
gs + δ

2
gls + δ

2
error/ nr) and δ

2
g/(δ

2
g 

+ δ
2
gl/nl + δ

2
gs/ns + δ

2
gls/nls + δ

2
error/ nslr), respectively, where nr 

= number of replications, nl = number of locations, ns = number of 
seasons, nls = number of location × seasons combinations and nslr 
is the number of seasons × location × replications (Moore and 
Dixon, 2015).   

Yield data was further subjected to GGE biplot (Yan and Tinker, 
2006) analysis for identification of high yielding and stable  soybean 
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genotypes. The GGE biplot analysis was performed to determine 
the mega-environments and visualize the “which-won-where” 
pattern following the model for GGE biplot based on singular value 
decomposition (SVD) of t principal components as described by 
Yan and Tinker (2006).  

 
GGE model:  Yij - µi - βj = ∑   

   k αik γjk + εij 

 
Where, Yij is the performance of genotype i in environment j, µ is 
the grand mean, j b is the main effect of environment j, k is the 
number of principal components (PC); λk is singular value of the k

th
 

PC; and αik and γjk are the scores of i
th
 genotype and j

th
 

environment, respectively for PCk; εij is the residual associated with 
genotype i in environment j. 

For mega-environment delineation of test locations, the which-
won-where scatter plot was generated by a polygon drawn by 
connecting genotypes that are furthest away from the biplot such 
that the polygon contained all other genotypes (Yan, 2002). Then 
the polygon was further divided by perpendicular lines drawn to the 
polygon sides and running from the biplot origin (Yan and Tinker, 
2006). The genotype focused comparison biplot for visualization 
and comparing genotypes based on mean yield and stability was 
determined by representing an average environment by an arrow. A 
straight line that dissecting the biplot origin to the average 
environment coordinate (average genotype axis) was drawn 
followed by a perpendicular line that passes through the biplot 
origin using the appropriate singular value partitioning (SVP) 
methods (Yan and Tinker, 2006). For the analysis of test locations, 
location comparison biplot was used for identification of ideal 
testing site (the most discriminating and representative locations) 
(Gasura et al., 2015). The environment vectors were drawn from 
the location comparison biplot origin to the markers of the 
environment (Yan and Tinker, 2006).  

 
 
RESULTS 
 
Combined ANOVA and broad sense heritability 
estimates 
 
Combined analysis of variance for grain yield showed 
significant (p<0.05) differences for all components except 
genotypes × season interaction. The broad sense 
coefficient of genetic determination for grain yield 
(BSCGD) (equivalent to broad sense heritability of fixed 
genotypes) on single plot basis, single environment basis 
and across environment basis were 3, 6 and 40% 
respectively (Table 3). Percentage protein and oil content 
results showed non-significance (p>0.05) for genotype, 
seasons, genotype × location interaction, genotype × 
season interaction and genotype × location × season 
interaction except location which was significant (p<0.05) 
(Table 4).  
 
 
Genotypes evaluation based on GGE biplots 
 
The which-won-where biplot showed different winning 
genotypes in different environments (Figure 1). The biplot 
accounted for 65.74% of the genotype main effect and G 
× E interaction for grain yield of the genotypes. The biplot 
was    dissected   into   eight   sectors   and   four   mega- 
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Table 3. Mean squares for grain yield of 25 soybean genotypes 
evaluated over locations and seasons . 
 

 Source of variation  
GY (kg/ha) 

Df MS 

Season 1 161551161*** 

Location 5 60563205*** 

Season. Location 5 10263901** 

Replication. Season. Location 24 2274739*** 

Genotype 24 320102*** 

Genotype × Location 120 195916** 

Genotype × Season 24 152514
ns

 

Genotype ×Location × Season 120 193393* 

Pooled Error 576 142233 

LSD 
 

770.1 

CV (%) 
 

23.4 

δ
2
g 

 
4940.81 

δ
2
gl 

 
8947.17 

δ
2
gs 

 
571.17 

δ
2
gls 

 
17053.33 

δ
2
error 

 
142233 

H2 on single plot basis 
 

0.03 

H2 individual environment basis 
 

0.06 

H2 on across environment basis 
 

0.41 
 

***=p<0.001; **=p<0.01; *=p<0.05; ns=not significant; GY= grain yield; G= 
genotype; H2= broad sense heritability; δ

2
g= variance component due to 

genotype; δ
2
gl= variance component due to genotype × location; δ

2
gs= 

variance component due to genotype × season; δ
2
gls= variance component 

due to genotype × location × season. 
 
 
 
environments and showed six vertex genotypes. The 
biplot identified winning genotypes in each mega-
environment as follows; BSPS 48A-28 (G15) for mega-
environment I (Bulindi, Nakabango and Kabanyolo), 
BSPS 48A-28-1 (G4) for mega-environment II (Iki-Iki), 
Bulindi 18.4B (G16) for mega-environment III (Ngetta) 
and BSPS 48A-24-1 (G18) for mega-environment IV 
(Abi). Genotypes within the polygon were less responsive 
than the vertex genotypes.  

The ranking plot (Figure 3) and genotype focused 
comparison biplot (Figure 2) ranked genotypes based on 
both mean grain yield and stability performance in order 
to identify the highest yielding and stable genotypes. 
Based on mean yield performance and stability, the 
biplots ranked G15>G16>G22>G17>G21, as ideal 
genotypes followed by a check variety Maksoy 3N and 
the rest of the advanced generation lines.  
 
 
Test location evaluation based on GGE biplots 
 
The environment vector plot showed that Abi, Nakabango 
and Bulindi had the longest vectors from the biplot origin. 
The  angle   between  Abi  and  Bulindi  was  almost  right 
angle and locations Ngetta and Iki-Iki had the shortest 

vectors from the biplot origin as well as a small angle 
between them. Abi, Nakabango and Bulindi were the 
most discriminating locations, while Ngetta and Iki-Iki 
were the least discriminating test locations (Figure 4). 

The environment focused comparison showed the ideal 
test location was Nakabango which was  located near the 
center of the concentric circles as the most representative 
testing location, while other test locations, Bulindi, 
Kabanyolo, Ngetta, Iki-Iki and Abi were not representative 
(Figure 5). 
 
 
Genotypes mean performance for yield, protein, oil 
content and agronomic traits 
 
The mean performance of 25 soybean genotypes 
evaluated for two seasons across six locations are 
summarized in Table 4. Genotype BSPS 48A-28 had the 
highest yield of 1767 kg/ha followed by Maksoy 3N and 
Mak 3N × 1N both with average grain yield of 1725 kg/ha; 
these genotypes had the longest days to 50% flowering 
as well as lowest groundnut leaf miner damage  and rust 
scores  (Table 4). The results of mean percentage protein 
content are shown in Table 4. The results showed that 
the overall mean for percentage protein content across  
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Figure 1. The which-won-where and mega-environment delineation biplot for yield 
of 25 soybean genotypes evaluated in six locations for two seasons (2018A and 
2018B) 

 
 
 

 
 
Figure 2. Genotype focused comparison biplot for yield showing the best 
genotypes based on mean performance and stability  
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Figure 3. Ranking plot for yield showing the best genotypes based on mean 
performance and stability. 

 
 
 

 
 
Figure 4. Environment vector plot showing discriminating ability of test 
locations based on yield  
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Figure 5. Environment focused comparison biplot showing the ideal testing 
location for soybean yield among the locations used in evaluations. 

 
 
 
seasons and selected locations was 33.54%, with 
genotypes 2N × GC, G8586 × UG5 and Bulindi 24.1A 
had the highest percentage protein content of 34.67, 
34.62 and 34.45, respectively. The results of mean 
percentage oil content analysis are presented in Table 4. 
The overall mean for oil content across seasons and 
selected locations was 16.01%, with genotypes Duiker × 
3N-5, NDGT 8.11× 3N-1 and NGDT 8.11 × 14.16B, were 
ranked the best three with percentage oil content of 
17.26, 16.62 and 16.55, respectively (Table 4).  

For locations, Bulindi had the highest mean yield (2650 
kg/ha) followed by Abi (1845 kg/ha), Nakabango (1698 
kg/ha), Ngetta (1567 kg/ha) and Kabanyolo (1017 kg/ha) 
while Iki-Iki had the lowest mean yield of 889 kg/ha 
(Table 5). The overall mean yield performance for the 
genotypes across locations and seasons was 1611kg/ha. 
  
 
DISCUSSION 
 
Nature of the G × E interaction, variance components 
and heritability estimates 
 
The presence of significant genotype main effect as well 
as G × E interaction for grain yield suggested differential 

responses of soybean genotypes across tested 
environments and implied the need to identify high-
yielding and stable genotypes across the test 
environments. Similar results have been reported by 
several researchers (Gurmu et al., 2009; Atnaf et al., 
2013; Kumar et al., 2014; Bhartiya et al., 2017). The large 
variance component attributed to locations alone justified 
the need to use genotype main effect plus G × E 
interaction (GGE) biplots, in which the GGE biplot 
captured much of the variation due to genotype plus G × 
E interaction as a fraction of the total sum of squares (G 
+ E + GE) (Yan et al., 2007). The large variance 
component due to locations and seasons depicted that 
the locations used in the present study were very diverse 
across  seasons.   Indeed,   Uganda   has   diverse  agro-
ecological zones with highly variable mean annual rainfall 
of 510-2160 mm, also varied with soil depth, texture, 
acidity and organic matter (Agoyi et al., 2017). The huge 
variability of these predictable factors (soil 
characteristics) and unpredictable factors (temperature 
and rainfall) (Table 1) from location to location leading 
into inconsistent genotypic performances (Obua, 2013) 
and therefore, widely adapted soybean genotypes with 
dynamic yield stability are recommended to strengthen 
soybean production country wide (Tukamuhabwa et al., 
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Table 4. Grain yield, protein, oil content and agronomic performance of 25 soybean genotypes evaluated across two seasons in Uganda 
(2018A and 2018B). 
 

Genotypes Yield(kg/ha) Protein (%) Oil (%) 100SWT DT50%F GLM NPODS PH RUST 

BSPS 48A-28 1767 32.9 15.8 17.0 44 1.1 32 74.3 1.1 

Mak 3N × 1N 1725 33.8 16.2 16.7 44 1.1 29 65.8 1.2 

Maksoy 3N 1725 33.3 15.9 17.3 41 1.2 31 66.7 1.1 

2N × GC 1710 34.7 16.0 15.2 43 1.2 33 67.4 1.6 

NGDT 8.11× 3N-2 1702 33.7 16.3 15.8 44 1.3 24 61.3 1.3 

BSPS 48A-27-1 1681 34.1 15.6 17.0 43 1.2 28 70.7 1.2 

BSPS 48A-25-1 1678 33.4 15.8 16.8 43 1.3 31 75.8 1.3 

BSPS 48A-24-1 1672 33.1 15.7 15.4 44 1.2 29 71.6 1.4 

Maksoy 4N 1671 32.9 16.1 16.9 44 1.1 30 72.5 1.3 

NGDT8.11×14.16B 1652 33.3 16.6 16.9 40 1.2 29 65.0 1.3 

Bulindi 18.4B 1648 33.3 16.0 15.2 42 1.4 28 62.2 1.2 

NII × GC 35.3-1 1633 33.1 16.1 15.0 44 1.2 30 74.8 1.6 

Nam II GC 17.3 1624 33.9 16.4 15.8 44 1.2 27 48.3 1.3 

Duiker × 3N-5 1609 34.3 17.3 17.4 43 1.1 33 85.0 1.6 

G8586 × UG5 1606 34.6 16.3 15.3 43 1.5 29 52.9 1.6 

NII × 35.3-3 1590 33.9 15.0 14.8 43 1.3 30 74.4 1.8 

NII × GC 35.3-2 1585 33.5 15.8 15.0 43 1.2 30 73.3 1.5 

Bulindi 24.1A 1572 34.5 15.5 16.0 43 1.2 31 81.0 1.8 

Nam 4M × 2N-2 1543 32.8 15.6 15.8 42 1.2 30 67.0 1.7 

BSPS 48A-28-1 1539 34.4 15.7 16.3 42 1.2 32 64.3 1.6 

NG 14.1 × NII-1 1531 33.8 15.8 18.1 42 1.2 24 66.8 1.4 

NG 14.1 × UG5 1491 33.8 15.3 16.2 45 1.2 31 80.5 1.4 

GC × 2N-1 1469 33.2 16.4 15.5 42 1.2 27 71.6 1.5 

NII × GC 13.2 1469 32.1 16.5 16.6 43 1.3 35 68.7 1.6 

NDGT 8.11× 3N-1 1385 32.3 16.6 18.1 42 1.1 23 68.4 1.4 

Mean 1611 33.5 16.0 16.3 42 1.2 29 69.2 1.5 

LSD 174.6 5.4 4.4 2.5 2.5 0.4 14.6 14.3 0.7 

CV (%) 23.4 8.3 13.4 9.0 3.1 19.7 27.7 11.1 29.8 

F probability <.001 NS NS <.001 <.001 <.001 <.001 <.001 <.001 

Genotype × Location 0.009 NS NS <.001 NS <.001 <.001 <.001 <.001 

Genotype × Location × Season 0.012 NS NS NS NS NS NS NS NS 
 

100SWT=100 seed weight (gm); GLM=groundnut leafminner (scores); NPODS= number of pods; PH= plant height (cm); DT50%F= days to 50% 
flowering, Rust (scores); NS= non-significant. 
 
 
2012). 

The large G × E interaction and error variance 
components found in the present study could reduce 
selection progress by complicating the identification and 
recommendation of superior genotypes for a target 
environment (Nyombayire et al., 2018; Hunde et al., 
2019). The results observed in this study, however, were 
of a lesser magnitude than that reported by Bhartiya et al. 
(2017) on 36 soybean genotypes evaluated in 3 
environments in India, where G × E interaction almost 
doubled the genotypic main effects and five times larger 
than environmental effects. Large G × E interaction and 
residuals observed in multi-environment trials (MET) 
affect the repeatability of the experiment (Simion et al., 
2018) could have contributed to the low broad sense 
coefficient of genetic determination (which is equivalent 

to broad sense heritability based on fixed genotypes) of 
3% on a single plot basis and 41% on across 
environments which has improved as the number of 
locations and seasons increased. Similar results were 
reported by Gasura et al. (2015) in sorghum where broad 
sense heritability increased from 2.8% on single plot 
basis to 31.8% on across environments basis. Gasura et 
al. (2015) and Sousa et al. (2018) suggested that large G 
× E interaction and error variance components increase 
the cost of variety evaluation due to increase in numbers 
of replications, locations and seasons needed to improve 
broad sense coefficient of genetic determination, and 
hence the selection efficiency. Since crop growing 
locations have no precisely stated demarcations and 
most farmers tend to influence each other in the choice of 
variety     that   is   grown   (Gasura   et   al.,   2015),   the 
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Table 5. Grain yield performance in kg/ha of 25 soybean genotypes evaluated across 12 locations. 
  

Genotype 
Location 

Abi Bulindi Iki-Iki Kabanyolo Nakabango Ngetta Mean yield Rank 

BSPS 48A-28 1683 3006 843 1165 2069 1836 1767 1 

Mak 3N × 1N 1809 2773 1073 1317 1841 1538 1725 2 

Maksoy 3N 2001 2642 817 1041 1937 1912 1725 3 

2N × GC 1578 2739 988 1346 1932 1678 1710 4 

NDGT 8.11 × 3N-2 1942 2592 850 1189 2021 1621 1702 5 

BSPS 48A-27-1 2139 2844 1092 924 1717 1369 1681 6 

BSPS 48A-25-1 1696 2686 1027 1181 1709 1766 1678 7 

BSPS 48A-24-1 2194 2729 747 1038 2002 1321 1672 8 

Maksoy 4N 1926 3036 630 983 1926 1526 1671 9 

NGDT 8.11×14.16B 1805 2540 986 1143 1598 1838 1652 10 

Bulindi 18.4B 1380 2938 926 1260 1867 1515 1648 11 

NII × GC 35.3-1 1915 3030 674 1064 1623 1492 1633 12 

Nam II GC 17.3 1694 2376 1014 1189 1861 1610 1624 13 

Duiker × 3N-5 2112 2712 937 883 1491 1519 1609 14 

G8586 × UG5 1928 2578 978 861 1716 1578 1606 15 

NII × 35.3-3 1757 2652 963 973 1635 1563 1590 16 

NII × GC 35.3-2 1978 2578 943 1064 1303 1643 1585 17 

Bulindi 24.1A 2016 2631 446 1040 1851 1448 1572 18 

Nam 4M × 2N-2 1935 2617 799 1111 1359 1438 1543 19 

BSPS 48A-28-1 1790 2313 1034 849 1513 1735 1539 20 

NG 14.1 × NII-1 1648 2561 1049 793 1670 1464 1531 21 

NG 14.1 × UG5 2121 2362 869 733 1440 1419 1491 22 

GC × 2N-1 1861 2392 802 865 1447 1447 1469 23 

NII × GC 13.2 1616 2520 876 759 1462 1579 1469 24 

NDGT 8.11× 3N-1 1603 2417 858 662 1453 1319 1385 25 

Mean 1845 2650 889 1017 1698 1567 1611 
 

CV (%) 25.4 20.5 26.8 31.4 19.1 17.6 
  

LSD 538 621.5 272.6 365.8 371.1 316 
  

 
 
 
development of soybean varieties adapted to a broad 
range of environments is strongly recommended, rather 
than environment-specific varieties  (Bhartiya et al., 
2017).  
 
 

Evaluation of soybean genotypes across 
environments  
 

The significant difference for grain yield and yield related 
traits observed among genotypes across environments 
indicated the presence of genetic and environmental 
causes of variation. The significant G × E interaction 
observed in this study also showed the significance of 
environmental effects in the expression of soybean grain 
yield. These results are consistent with the findings of 
other researchers (Chaudhary and Wu, 2012; Atnaf et al., 
2013; Krisnawati and Adie, 2018; Hunde et al., 2019). 
The absence of significant genotype, G × E interaction for 
protein and oil content observed in this study was 
inconsistent with previous  studies  (Gurmu  et  al.,  2009; 

Nascimento et al., 2010; Chaudhary and Wu, 2012; 
Hampango et al., 2017) who reported the presence of 
significance genotype, G × E interaction for protein and 
oil content. The results obtained from this study showed 
that there was limited genetic variation among the tested 
genotypes for protein and oil content and therefore there 
is no need to advance this set of genotypes targeting 
commercial improvement of these two traits.  

Based on scatter biplot for mega-environments 
delineation, only four mega-environments with their 
winning genotypes located at the vertices of the polygon 
were identified. Locations Kabanyolo, Bulindi and 
Nakabango were classified on mega-environment I, in 
which BSPS 48A-28 was the winning genotype. Mega-
environment II had Iki-Iki with BSPS 48A-28-1 as the 
winning genotype, Ngetta was classified on mega-
environment III where genotype Bulindi 18.4B was the 
most adapted. Mega-environment IV had Abi found in the 
West Nile region where BSPS 48A-24-1 was the winning 
genotype,   indicating   that   Uganda   had   broad   agro- 



256          J. Plant Breed. Crop Sci. 
 
 
 
ecological regions with unique environmental 
characteristics with specific suited high yielding 
genotypes. Location Bulindi had the highest mean yield 
of 2650 kg/ha, while Iki-Iki had the lowest mean yield of 
889 kg/ha. The reason is Bulindi received high rainfall 
(1700 mm/ annum) and the site has good soil types, with 
good nutritional status and water holding capacity (Table 
1). The reason for low yielding in Iki-Iki might be the 
gradual changes in biotic and abiotic factors from season 
to season. On the other hand, Iki-Iki is characterized by 
poor sandy soils, with low water holding capacity 
(Tukamuhabwa et al., 2012). Also Iki-Iki is a hot spot for 
groundnut leaf miner, a new soybean pest which is 
devastating soybean in Uganda (Ibanda et al., 2018). 
Despite the relatively low yield potential for soybean in 
Iki-Iki, genotype BSPS 48A-28 managed to maintain its 
average performance implying that this genotype had 
good dynamic stability. This is a good attribute for any 
commercial variety given the unpredictable patterns of 
biotic and abiotic factors in most parts of the country 
(Obua, 2013). The existence of crossover G × E 
interaction in this study indicated that genotypes 
evaluation and recommendation typically based on any 
single location was unreliable because there is differential 
response of genotypes across locations (Mare et al., 
2017). The presence of crossover interactions indicated 
genotype evaluation should be based on mean 
performance and stability (Yan and Kang, 2002). 

The genotype focused comparison biplot indicated that 
the most stable and high-yielding genotype was BSPS 
48A-28 probably due to having lowest groundnut leaf 
miner damage, rust scores, high number of pods and, is 
late maturing advanced line (Table 4). Based on mean 
yield and stability, the genotype maintained its above 
average performance in most of the environments. 
Genotype Mak 3N × 1N was comparable in yield 
performance to the commercial variety Maksoy 3N which 
was one of its parents. Meanwhile, a commercial variety 
Maksoy 4N performed well based on mean yield and 
stability, although it was ranked fourth (Figure 3) 
outperformed by three experimental genotypes and 
Maksoy 3N a commercial variety. Based on ranking plot 
for mean yield performance and stability (Figure 3), 
genotypes BSPS 48A-28; Mak 3N × 1N and NGDT 
8.11×3N-2 are potential candidates for release since the 
variety release condition in Uganda advocate for broad 
instead of specific adaptation.  
 
 
Evaluation of the test environments 
 

The presence of G × E interaction for soybean yield 
justifies undertaking MET during cultivar selection and 
recommendations (Krisnawati and Adie, 2018). Based on 
test location biplot, the vector length of the biplot 
approximates the standard deviation within each location 
and a measure of the discriminating ability of the location 
(Yan   and  Tinker,  2006).  Nakabango,  Bulindi  and  Abi  

 
 
 
 
locations, which had the longest vectors from the biplot 
origin, were the most discriminating testing locations and, 
therefore these three testing locations could be used 
jointly as discriminating locations for testing early 
generation breeding materials (Yan et al., 2007; Yan and 
Tinker, 2006). Bulindi and Abi were discriminating 
genotypes but not representative and therefore, these 
two sites could be used together as “culling environments” 
for easily selecting against unstable genotypes during the 
breeding process (Yan and Kang, 2002). Nakabango was 
both discriminating and representative. Discriminating 
and representative test locations are useful for selecting 
superior genotypes while eliminating inferior ones (Atnaf 
et al., 2013). 
 
 

CONCLUSION AND RECOMMENDATIONS 
 

There was crossover G × E interaction for soybean grain 
yield which was twice larger than the effect of genotypes. 
Non-significant G × E interaction for percentage protein 
and oil content observed in the present study, hence no 
need to advance this same set of genotypes targeting 
commercial improvement of these two characters. We 
recommend BSPS 48A-28; Mak 3N × 1N and NGDT 
8.11×3N-2 as widely adapted and higher yielding 
genotypes that could be advanced to the national 
performance trials before commercialization in Uganda. 
These three genotypes had lowest groundnut leaf miner 
damage, rust scores, high number of pods and, are late 
maturing advanced lines. They have almost all desirable 
attributes of a good soybean cultivar. Location 
Nakabango was both discriminating and representative, 
hence testing soybean genotypes at this location is ideal; 
it can save time and resources. 
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